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The available virial coefficients for the two-dimensional hard-disks model are transformed into a matrix
representation of the thermodynamic potentials, which allows for an accurate description of the whole fluid
phase, up to the phase transition. We find that the fluid phase terminates at the transition point, implying a
second-order phase transition in accordance with the Kosterlitz-Thouless-Halperin-Nelson-Young scenario of a
transition into a hexatic phase. The density and pressure at the transition are calculated from the available first
ten virial coefficients, and are found to be in excellent agreement with recent Monte-Carlo calculations. Finally,
we calculate the equation of state in the critical region.
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It has become clear recently that the essential molecular
mechanism that drives freezing transitions can be understood
in terms of entropy. This is demonstrated by ordering transi-
tions observed in purely entropy-driven hard-core models,
such as the hard-spheres model which has played a key role
in a statistical description of freezing. The equation of state
of classical hard spheres in d dimensions is a long-standing
problem of great importance in statistical mechanics. Since
the pioneering works of van der Waals �1� and Boltzmann
�2�, these systems have been investigated intensively, but
there are still a lot of fundamental unresolved problems. In
particular, the analytic properties of the freezing transitions
of the fluid phases �for d�1� are unknown. These transitions
have been demonstrated so far only by Monte-Carlo �MC�
computer simulations �3–6�. For d�3 the transition is a
first-order phase transition, while for the hard-disks system
�d=2� it is believed to be a second-order transition from the
fluid phase to an orientationally ordered hexatic phase �5,6�,
in accordance with the Kosterlitz-Thouless-Halperin-Nelson-
Young �KTHNY� picture �7–9�. There is a huge gap between
the values of the MC freezing densities: � f�d=2�=0.779�2�
�5,6� and � f�d=3�=0.663�2� �10,11� �densities here are in
units of the corresponding densities of closest packing
�cp�d��, and the best known rigorous lower bounds for the
termination densities of these fluid phases �12�: �lb�d=2�
=0.2849 and �lb�d=3�=0.171 25.

Many approximate equations of state have been proposed,
most of them based on the available virial coefficients. How-
ever, none of these proposed equations exhibits a freezing
transition at the above MC densities. Indeed, for a variety of
hard-core lattice-gas models the asymptotic behavior of the
virial coefficients is dominated by a pair of nonphysical com-
plex singularities in the complex � plane �13–16�. As a re-
sult, it is very difficult to extract information concerning the
behavior of the fluid phase at the vicinity of the freezing
transition from the virial series.

In this work we apply a transformation of the virial series
into a matrix representation of the thermodynamic functions
as a function of the activity. It is shown that this transforma-
tion results in a tractable asymptotic behavior of the matrix

elements for repulsive systems. It thus allows for extrapola-
tion of the existing virial coefficients to yield an accurate
description of the fluid phase up to its termination point. In
particular, we show that the hard-disks fluid terminates at the
ordering transition point, showing no evidence for a super-
cooled disordered phase or random closest packing, in con-
trast with the hard-spheres scenario. In a first-order freezing
transition the free energy moves discontinously from one
phase to the other, and no singularity is expected at the fluid
branch. Therefore, our observation of a singularity at the
transition point in the extrapolation of the low-density cluster
expansion supports the KTHNY picture, suggesting a
second-order phase transition at the termination of the fluid
branch. We accurately predict the density �c=0.795�10� and
pressure pc=7.95�2� at the phase transition in agreement
with recent MC results, and find the critical dependence of
the equation of state �the pressure as a function of density� in
the vicinity of the transition.

The low-density Mayer cluster expansion, in terms of the
activity z, provides an alternative description of the fluid
phase. In contrast to the virial series, the asymptotic form of
the cluster coefficients of a repulsive system is well defined
�17–19�:

nbn � �− z0�−�n−1�n−��d��1 + cn−��d�� . �1�

The radius of convergence of the cluster series, z0, is model-
dependent, but the exponents ��d� and ��d� are universal,
depending only on the spatial dimensionality d. It turns out
�20� that a convenient representation of the equation of state
can be obtained in terms of the real symmetric tridiagonal
matrix R defined by

�Rn�11 = �− 1�n�n + 1�bn+1. �2�

The first elements of the R matrix are given by �see �16� for
an explicit formula for constructing the R matrix�

R11 = − 2b2,

R12
2 = 3b3 − 4b2
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R22 = �− 4b4 + 12b2b3 − 8b2
3�/�3b3 − 4b2

2� . �3�

The density is then given in terms of the R matrix by

��z� = �
n=1

�

nbnzn = �
n=0

�

�− 1�nzn+1�Rn�11 = z�I + zR�−1
11, �4�

where I is the identity matrix. These matrix elements can be
represented by the shifted Stieltjes summation �20�:

��z� = �
j=1

�

uj
z

1 + � jz
, �5�

where the eigenvalues of R, � j, are just the Yang-Lee zeroes
of the grand canonical partition function, and uj is the square
of the first component of the jth eigenvector of R and thus
satisfies uj �0 for all j. The spectrum lies in the range
−zt

−1�� j �z0
−1, where zt is the termination activity of the

fluid phase. As a result, the matrix representation has a trac-
table form in spite of the fact that the ratio zt /z0 is large. We
have recently applied this matrix approach to the study of the
hard-core N3 square lattice model, and provided evidence
concerning the critical region and the nature of the fluid-solid
transition �21�. In particular we showed that the fluid phase
does not terminate at zc, the critical activity, where the sys-
tem solidify through a first-order phase transition.

Recently, Clisby and McCoy �22� have evaluated the
virial coefficients Bn�d� for hard spheres in d dimensions up
to n=10 and d=8. In this paper we use their results to obtain
an accurate equation of state for the hard-disks system �d
=2�, employing the above matrix representation.

Our first step is to estimate the location of the leading
singularity z0. Utilizing the ten available virial coefficients
and the fact that ��2�=��2�= 5

6 , we applied the Levin accel-
eration method �23� to the series �n11/6	bn	�. Inspecting the
location of the divergence of the various approximants, we
estimated the value z0=0.168 476�1� for the leading singu-
larity.

We then calculated the first nine nonvanishing matrix el-
ements of the R matrix �Table I�. As expected, the diagonal
and near diagonal matrix elements rapidly converge to con-
stant asymptotic values. Thus, for m ,n	1,Rmn forms a tridi-
agonal Toeplitz matrix whose asymptotic constant values B
�diagonal� and A �near diagonal� are related to the two
branch points of the fluid thermodynamic functions by

z0
−1 = 2A + B, zt

−1 = 2A − B . �6�

Figure 1 presents the diagonal matrix elements Rnn and twice
the near diagonal terms 2Rn,n+1 as a function of 1/n2, show-
ing that the matrix elements converge towards the asymptote

like 1/n2, consistently with the lattice N3-model behavior
�21�. The intercepts of the resulting straight lines are B
=2.967 5�3� and 2A=2.968 0�3�, in perfect agreement with
the previous independent estimate z0

−1=2A+B=5.935 56�4�.
These extrapolated values lead to zt

−1=2A−B=0.000 5�5�,
which yields the bound zt�1000 for the termination activity
of the fluid phase.

While we are not able to locate the termination activity
accurately, it turns out that the termination density is not
sensitive to the exact value of zt. For fixed asymptotic values
A and B, or equivalently fixed values of the two branch
points z0 and zt, we extrapolate the matrix elements of the R
matrix assuming n−2 convergence towards the asymptotic
values, and then compute the density ��z�. We find that the
density is insensitive to the small uncertainties in the value
of the leading singularity z0, and is independent of zt for z

zt �Fig. 2�. Furthermore, the value of the termination den-
sity ��zt�=0.795�10� is almost independent on zt for all val-
ues of zt obeying zt�1000. This value of the termination
density is indeed very close to the MC fluid-hexatic transi-
tion density �c=0.779�2� �5,6�. It is tempting to conjecture
that both values are identical and the fluid phase does indeed
terminate at the activity zt=zc. Termination of the fluid phase
at the transition point is characteristic of a second-order
phase transition, in contrast with the situation in first order
fluid-solid phase transitions �such as the hard spheres, the N3
�21� and the Zwanzig long rods �27� ordering transitions�,
where the fluid branch can be continued beyond the transi-
tion, describing a metastable supercooled fluid. Thus, our
results support the KTHNY scenario of the hard-disks fluid

TABLE I. First nine elements of the R matrix. The numbers in parentheses are the errors in the least
significant digit �one standard deviation�, resulting from the errors in the coefficients Bn as reported in Ref.
�22�.

n 1 2 3 4 5

Rnn 3.6275987 2.9629630 2.965658�5� 2.966474�53� 2.96718�29�
Rn,n+1 1.6494542 1.5240013 1.501923�14� 1.494173�68�

FIG. 1. �Color online� The diagonal Rnn �circles� and twice the
off-diagonal 2Rn,n+1 �triangles� elements of the tridiagonal matrix R
as a function of n, and their extrapolation for n	1, as a function of
1/n2 �all error bars are smaller than symbol sizes�.
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terminating at a second-order phase transition towards the
hexatic phase �5–9�.

Unlike the density, the pressure at the transition is sensi-
tive to zc. Thus, we are not able to predict the transition
pressure based on the virial coefficients alone. Instead, we
adopt the value suggested in the literature for the termination
activity, zt=zc
exp�12.7� �24�, and calculate the pressure
based on the above matrix method given this value �Fig. 3�.
This calculation provides us with the full equation of state,
covering the whole fluid branch from zero density towards
the transition. In particular, it predicts p�zc�=7.95�2�, in ex-
cellent agreement with recent MC calculations �6�, further
attesting towards the accuracy of our approach.

Finally, we study the critical behavior in the vicinity of
the transition. Regardless of zt, the density in the region z
�zt is well fitted by �see the inset of Fig. 3�

��z� = �c − c�zc − z�1−� �7�

and the critical exponent is �independent of zt�, ��0.75�3�.
Accordingly, the pressure has a strong dependence on the
density in the vicinity of the transition, the leading term of
which is given by �see inset of Fig. 3�:

pc − p � ��c − ��1/�1−��. �8�

This strong density dependence might account for the diffi-
culties experienced by many groups using various ap-

proaches in probing the transition region through the virial
expansion.

The extrapolation method through the R matrix as pre-
sented here is applicable, in principle, to all repulsive poten-
tial systems. In particular, it could be used to study hard-
spheres systems in any spatial dimensionality. In practice, it
depends on the accuracy of the available virial coefficients.
Determination of the rate of convergence of the R matrix
elements to their asymptotic values is sensitive to uncertain-
ties in the values of the matrix elements, as well as to the
corrections to the asymptotic behavior of these matrix ele-
ments.

In summary, it is shown that the available Mayer cluster
expansion coefficients, transformed into a matrix representa-
tion, allow for a reliable description of the hard-disk fluid
properties, up to the its termination point. The fluid phase
terminates at the transition point, as expected for a second-
order phase transition, with no metastable supercooled fluid
phase. We also find the behavior of the equation of state in
the critical region. These results are in concordance with the
KTHNY picture.
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